I. Introduction

Typical communication channels
Signal types
Communication system elements
A/D & D/A conversion
Shannon's channel capacity theorem
Channel capacity

I. Introduction

- 1) Typical Communication Channels
 - Three traditional grades of channels

Narrowband	
Voiceband	
Wideband	

Channel attenuation issues

Copper wire Attenuation versus Distance

Figure 1.6 - Attenuation vs. Frequency

08/25/03

Figure 1.7 - Low Frequencies

3

Figure 1.8 - Typical Telephone Channel Attenuation

Figure 1.9 -Typical Telephone Channel Phase

2) Signal Types

Analog signal

Analog sampled signal

Digital signal

3) Communication System Elements

4) A/D and D/A Conversion

5) Shannon's Channel Capacity Theorm

- <u>Shannon's theorem</u> gives the maximum rate of information transmission → channel capacity
- Definition: Information content of a message *x* is defined as

$$I_x = \log_2 \frac{1}{P_x}$$

where P_x is defined as probability of occurrence of x

• Definition: Entropy is defined as the average information per message

$$H = \sum_{i=1}^{N} P_{x_i} I_{x_i} = \sum_{i=1}^{N} P_{x_i} \log_2 \left(\frac{1}{P_{x_i}}\right)$$

Examples

A communication system consists of four messages each with probabilities $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{8}$, $\frac{1}{8}$ Find the entropy

• A communication system consists of two messages x_1 and x_2 . Compute the entropy expression in terms of P_{x_1}

Channel capacity

★ Definition: The information rate (expressed in bits per second) is defined as:

$$R = r$$
 H
message rate (1/s) entropy (bits/message)

★ Definition

Channel capacity ⇔ maximum information rate

★ Shannon-Hartley theorem: The channel capacity for a bandlimited channel operating in additive white Gaussian noise is given by:

$$C = B \log_2 \left(1 + \frac{S}{N} \right)$$

where

B: channel bandwidth in Hz

S/N: SNR

★ Shannon theorem comments

- (1) B 🖊
- (2) SNR /
- (3) N = 0
- $(4) B \rightarrow +\infty$

11